Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Vaccine ; 2023.
Article in English | EuropePMC | ID: covidwho-2301049

ABSTRACT

We examined whether the second monovalent SARS-CoV-2 mRNA booster increased antibody levels and their neutralizing activity to Omicron variants in nursing home residents (NH) residents and healthcare workers (HCW). We sampled 376 NH residents and 63 HCW after primary mRNA vaccination, first and second boosters, for antibody response and pseudovirus neutralization assay against SARS-CoV-2 wild-type (WT) (Wuhan-Hu-1) strain, Omicron BA.1 and BA.5 variants. Antibody levels and neutralizing activity progressively increased with each booster but subsequently waned over 3-6 months. NH residents, both those without and with prior infection, had a robust geometric mean fold rise (GMFR) of 8.1 (95% CI 4.4, 14.8) and 7.8 (95% CI 4.8, 12.9) respectively in Omicron-BA.1 subvariant specific neutralizing antibody levels following the second booster vaccination (p<0.001). These results support the ongoing efforts to ensure that both NH residents and HCW are up-to-date on recommended SARS-CoV-2 vaccine booster doses.

2.
Open Forum Infect Dis ; 10(2): ofad063, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2259586

ABSTRACT

Background: Latent cytomegalovirus (CMV) infection is immunomodulatory and could affect mRNA vaccine responsiveness. We sought to determine the association of CMV serostatus and prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection with antibody (Ab) titers after primary and booster BNT162b2 mRNA vaccinations in healthcare workers (HCWs) and nursing home (NH) residents. Methods: Nursing home residents (N = 143) and HCWs (N = 107) were vaccinated and serological responses monitored by serum neutralization activity against Wuhan and Omicron (BA.1) strain spike proteins, and by bead-multiplex immunoglobulin G immunoassay to Wuhan spike protein and its receptor-binding domain (RBD). Cytomegalovirus serology and levels of inflammatory biomarkers were also measured. Results: Severe acute respiratory syndrome coronavirus 2-naive CMV seropositive (CMV+) HCWs had significantly reduced Wuhan-neutralizing Ab (P = .013), anti-spike (P = .017), and anti-RBD (P = .011) responses 2 weeks after primary vaccination series compared with responses among CMV seronegative (CMV-) HCWs, adjusting for age, sex, and race. Among NH residents without prior SARS-CoV-2 infection, Wuhan-neutralizing Ab titers were similar 2 weeks after primary series but were reduced 6 months later (P = .012) between CMV+ and CMV- subjects. Wuhan-neutralizing Ab titers from CMV+ NH residents who had prior SARS-CoV-2 infection consistently trended lower than titers from SARS-CoV-2 experienced CMV- donors. These impaired Ab responses in CMV+ versus CMV- individuals were not observed after booster vaccination or with prior SARS-CoV-2 infection. Conclusions: Latent CMV infection adversely affects vaccine-induced responsiveness to SARS-CoV-2 spike protein, a neoantigen not previously encountered, in both HCWs and NH residents. Multiple antigenic challenges may be required for optimal mRNA vaccine immunogenicity in CMV+ adults.

3.
NPJ Vaccines ; 7(1): 158, 2022 Dec 03.
Article in English | MEDLINE | ID: covidwho-2151038

ABSTRACT

Currently available mRNA vaccines are extremely safe and effective to prevent severe SARS-CoV-2 infections. However, the emergence of variants of concerns (VOCs) has highlighted the importance of high population-based vaccine rates to effectively suppress viral transmission and breakthrough infections. While initially left out from vaccine efforts, children have become one of the most affected age groups and are key targets to stop community and household spread. Antibodies are central for vaccine-induced protection and emerging data points to the importance of additional Fc effector functions like opsononophagocytosis or cytotoxicity, particularly in the context of VOCs that escape neutralizing antibodies. Here, we observed delayed induction and reduced magnitude of vaccine-induced antibody titers in children 5-11 years receiving two doses of the age-recommended 10 µg dose of the Pfizer SARS-CoV-2 BNT162b2 vaccine compared to adolescents (12-15 years) or adults receiving the 30 µg dose. Conversely, children mounted equivalent or more robust neutralization and opsonophagocytic functions at peak immunogenicity, pointing to a qualitatively more robust humoral functional response in children. Moreover, broad cross-VOC responses were observed across children, with enhanced IgM and parallel IgG cross-reactivity to VOCs in children compared to adults. Collectively, these data argue that despite the lower magnitude of the BNT162b2-induced antibody response in children, vaccine-induced immunity in children target VOCs broadly and exhibit enhanced functionality that may contribute to the attenuation of disease.

4.
Cell Rep Med ; : 100834, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2120103

ABSTRACT

The emergence of the antigenically distinct and highly transmissible Omicron variant highlights the possibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune escape due to viral evolution. This continued evolution, along with the possible introduction of new sarbecoviruses from zoonotic reservoirs, may evade host immunity elicited by current SARS-CoV-2 vaccines. Identifying cross-reactive antibodies and defining their epitope(s) can provide templates for rational immunogen design strategies for next-generation vaccines. Here, we characterize the receptor-binding-domain-directed, cross-reactive humoral repertoire across 10 human vaccinated donors. We identify cross-reactive antibodies from diverse gene rearrangements targeting two conserved receptor-binding domain epitopes. An engineered immunogen enriches antibody responses to one of these conserved epitopes in mice with pre-existing SARS-CoV-2 immunity; elicited responses neutralize SARS-CoV-2, variants, and related sarbecoviruses. These data show how immune focusing to a conserved epitope targeted by human cross-reactive antibodies may guide pan-sarbecovirus vaccine development, providing a template for identifying such epitopes and translating to immunogen design.

5.
Nat Commun ; 13(1): 3571, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1908170

ABSTRACT

The availability of three COVID-19 vaccines in the United States provides an unprecedented opportunity to examine how vaccine platforms and timing of vaccination in pregnancy impact maternal and neonatal immunity. Here, we characterize the antibody profile after Ad26.COV2.S, mRNA-1273 or BNT162b2 vaccination in 158 pregnant individuals and evaluate transplacental antibody transfer by profiling maternal and umbilical cord blood in 175 maternal-neonatal dyads. These analyses reveal lower vaccine-induced functions and Fc receptor-binding after Ad26.COV2.S compared to mRNA vaccination and subtle advantages in titer and function with mRNA-1273 versus BN162b2. mRNA vaccines have higher titers and functions against SARS-CoV-2 variants of concern. First and third trimester vaccination results in enhanced maternal antibody-dependent NK-cell activation, cellular and neutrophil phagocytosis, and complement deposition relative to second trimester. Higher transplacental transfer ratios following first and second trimester vaccination may reflect placental compensation for waning maternal titers. These results provide novel insight into the impact of platform and trimester of vaccination on maternal humoral immune response and transplacental antibody transfer.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Ad26COVS1 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Female , Humans , Immunity , Infant, Newborn , Placenta , Pregnancy , Pregnancy Complications, Infectious/prevention & control , SARS-CoV-2 , United States , Vaccination/methods
6.
EBioMedicine ; 80: 104066, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1850958

ABSTRACT

BACKGROUND: Nursing home (NH) residents have borne a disproportionate share of SARS-CoV-2 morbidity and mortality. Vaccines have limited hospitalisation and death from earlier variants in this vulnerable population. With the rise of Omicron and future variants, it is vital to sustain and broaden vaccine-induced protection. We examined the effect of boosting with BNT162b2 mRNA vaccine on humoral immunity and Omicron-specific neutralising activity among NH residents and healthcare workers (HCWs). METHODS: We longitudinally enrolled 85 NH residents (median age 77) and 48 HCWs (median age 51), and sampled them after the initial vaccination series; and just before and 2 weeks after booster vaccination. Anti-spike, anti-receptor binding domain (RBD) and neutralisation titres to the original Wuhan strain and neutralisation to the Omicron strain were obtained. FINDINGS: Booster vaccination significantly increased vaccine-specific anti-spike, anti-RBD, and neutralisation levels above the pre-booster levels in NH residents and HCWs, both in those with and without prior SARS-CoV-2 infection. Omicron-specific neutralisation activity was low after the initial 2 dose series with only 28% of NH residents' and 28% HCWs' titres above the assay's lower limit of detection. Omicron neutralising activity following the booster lifted 86% of NH residents and 93% of HCWs to the detectable range. INTERPRETATION: With boosting, the vast majority of HCWs and NH residents developed detectable Omicron-specific neutralising activity. These data provide immunologic evidence that strongly supports booster vaccination to broaden neutralising activity and counter waning immunity in the hope it will better protect this vulnerable, high-risk population against the Omicron variant. FUNDING: NIH AI129709-03S1, U01 CA260539-01, CDC 200-2016-91773, and VA BX005507-01.


Subject(s)
COVID-19 Vaccines , COVID-19 , Aged , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Humans , Immunization, Secondary , Middle Aged , Nursing Homes , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
7.
Vaccines (Basel) ; 10(4)2022 Mar 23.
Article in English | MEDLINE | ID: covidwho-1822452

ABSTRACT

Emergent SARS-CoV-2 variants and waning humoral immunity in vaccinated individuals have resulted in increased infections and hospitalizations. Children are not spared from infection nor complications of COVID-19, and the recent recommendation for boosters in individuals ages 12 years or older calls for broader understanding of the adolescent immune profile after mRNA vaccination. We tested the durability and cross-reactivity of anti-SARS-CoV-2 serologic responses over a six-month time course in vaccinated adolescents against the SARS-CoV-2 D614G ("wild type") and Omicron antigens. Serum from 77 adolescents showed that anti-Spike antibodies wane significantly over six months. After completion of a two-vaccine series, cross-reactivity against Omicron-specific receptor-binding domain (RBD) was seen. Functional humoral activation against wild type and Omicron SARS-CoV-2 also declines over time in vaccinated adolescent children. Evidence of waning mRNA-induced vaccine immunity underscores vulnerabilities in long-term pediatric protection against SARS-CoV-2 infection, while cross-reactivity highlights the additional benefits of vaccination. Characterization of adolescent immune signatures post-vaccination will inform guidance on vaccine platforms and timelines, and ultimately optimize immunoprotection of children.

8.
Cell ; 185(3): 457-466.e4, 2022 02 03.
Article in English | MEDLINE | ID: covidwho-1611649

ABSTRACT

Recent surveillance has revealed the emergence of the SARS-CoV-2 Omicron variant (BA.1/B.1.1.529) harboring up to 36 mutations in spike protein, the target of neutralizing antibodies. Given its potential to escape vaccine-induced humoral immunity, we measured the neutralization potency of sera from 88 mRNA-1273, 111 BNT162b, and 40 Ad26.COV2.S vaccine recipients against wild-type, Delta, and Omicron SARS-CoV-2 pseudoviruses. We included individuals that received their primary series recently (<3 months), distantly (6-12 months), or an additional "booster" dose, while accounting for prior SARS-CoV-2 infection. Remarkably, neutralization of Omicron was undetectable in most vaccinees. However, individuals boosted with mRNA vaccines exhibited potent neutralization of Omicron, only 4-6-fold lower than wild type, suggesting enhanced cross-reactivity of neutralizing antibody responses. In addition, we find that Omicron pseudovirus infects more efficiently than other variants tested. Overall, this study highlights the importance of additional mRNA doses to broaden neutralizing antibody responses against highly divergent SARS-CoV-2 variants.

SELECTION OF CITATIONS
SEARCH DETAIL